Some Algorithmic Aspects of Subspace Identification with Inputs
نویسندگان
چکیده
It has been experimentally verified that most commonly used subspace methods for identification of linear state-space systems with exogenous inputs may, in certain experimental conditions, run into ill-conditioning and lead to ambiguous results. An analysis of the critical situations has lead us to propose a new algorithmic structure which could be used either to test difficult cases and/or to implement a suitable combination of new and old algorithms presented in the literature to help fixing the problem.
منابع مشابه
A New Subspace Identification Method for Closed-Loop Systems Using Measurable Disturbance
In this paper, we consider a closed-loop subspace identification problem without using probing inputs; but we assume that there is a measurable disturbance which can be used as a test input for identification. Deterministic and stochastic subsystems are derived by applying the orthogonal decomposition (ORT) of the joint input-output process and realization methods. We develop a new ORTbased clo...
متن کاملSubspace system identification
We give a general overview of the state-of-the-art in subspace system identification methods. We have restricted ourselves to the most important ideas and developments since the methods appeared in the late eighties. First, the basis of linear subspace identification are summarized. Different algorithms one finds in literature (Such as N4SID, MOESP, CVA) are discussed and put into a unifyin...
متن کاملNonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms
Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...
متن کاملNuclear norm system identification with missing inputs and outputs
We present a system identification method for problems with partially missing inputs and outputs. The method is based on a subspace formulation and uses the nuclear norm heuristic for structured low-rank matrix approximation, with the missing input and output values as the optimization variables. We also present a fast implementation of the alternating direction method of multipliers (ADMM) to ...
متن کاملSubspace-diskcyclic sequences of linear operators
A sequence ${T_n}_{n=1}^{infty}$ of bounded linear operators on a separable infinite dimensional Hilbert space $mathcal{H}$ is called subspace-diskcyclic with respect to the closed subspace $Msubseteq mathcal{H},$ if there exists a vector $xin mathcal{H}$ such that the disk-scaled orbit ${alpha T_n x: nin mathbb{N}, alpha inmathbb{C}, | alpha | leq 1}cap M$ is dense in $M$. The goal of t...
متن کامل